Summary: Diacylglycerol kinase accessory domain
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Diacylglycerol kinase". More...
Diacylglycerol kinase Edit Wikipedia article
Diacylglycerol Kinase (DGK) is an integral membrane protein that is expressed in E. coli. DGK has 121-residues and is a trimeric enzyme. DGK catalyzes the conversion of diacylglycerol (with ATP) to phosphatidic acid.
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Diacylglycerol kinase accessory domain Provide feedback
Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. This domain is assumed to be an accessory domain: its function is unknown.
Literature references
-
Sakane F, Yamada K, Kanoh H, Yokoyama C, Tanabe T; , Nature 1990;344:345-348.: Porcine diacylglycerol kinase sequence has zinc finger and E-F hand motifs. PUBMED:2156169 EPMC:2156169
-
Sakane F, Imai S, Kai M, Wada I, Kanoh H; , J Biol Chem 1996;271:8394-8401.: Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein-tyrosine kinases. PUBMED:8626538 EPMC:8626538
-
Schaap D, de Widt J, van der Wal J, Vandekerckhove J, van Damme J, Gussow D, Ploegh HL, van Blitterswijk WJ, van der Bend RL; , FEBS Lett 1990;275:151-158.: Purification, cDNA-cloning and expression of human diacylglycerol kinase. PUBMED:2175712 EPMC:2175712
-
Kanoh H, Yamada K, Sakane F; , Trends Biochem Sci 1990;15:47-50.: Diacylglycerol kinase: a key modulator of signal transduction? PUBMED:2159661 EPMC:2159661
Internal database links
SCOOP: | YegS_C |
Similarity to PfamA using HHSearch: | YegS_C |
External database links
SMART: | DAGKa |
This tab holds annotation information from the InterPro database.
InterPro entry IPR000756
Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases. Protein kinases catalyse the transfer of the gamma phosphate from nucleotide triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. Phosphoprotein phosphatases catalyse the reverse process. Protein kinases fall into three broad classes, characterised with respect to substrate specificity [ PUBMED:3291115 ]:
- Serine/threonine-protein kinases
- Tyrosine-protein kinases
- Dual specificity protein kinases (e.g. MEK - phosphorylates both Thr and Tyr on target proteins)
Protein kinase function is evolutionarily conserved from Escherichia coli to human [ PUBMED:12471243 ]. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation [ PUBMED:12368087 ]. Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins. The catalytic subunits of protein kinases are highly conserved, and several structures have been solved [ PUBMED:15078142 ], leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases [ PUBMED:15320712 ].
Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. The DAG kinase domain is assumed to be an accessory domain. Upon cell stimulation, DAG kinase converts DAG into phosphatidate, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. It catalyses the reaction: ATP + 1,2-diacylglycerol = ADP + 1,2-diacylglycerol 3-phosphate. The enzyme is stimulated by calcium and phosphatidylserine and phosphorylated by protein kinase C. This domain is always associated with INTERPRO .
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | diacylglycerol kinase activity (GO:0004143) |
Biological process | protein kinase C-activating G protein-coupled receptor signaling pathway (GO:0007205) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan NAD_kinase_C (CL0701), which has the following description:
This superfamily includes families that are related to the C-terminal beta sandwich domain of NAD kinase. It includes the YegS C-terminal domain, the accessory domains from Diacylglycerol kinase and the ceramide kinase C-terminal domain.
The clan contains the following 4 members:
CERK_C DAGK_acc NAD_kinase_C YegS_CAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (32) |
Full (10032) |
Representative proteomes | UniProt (15510) |
||||
---|---|---|---|---|---|---|---|
RP15 (1315) |
RP35 (3177) |
RP55 (7449) |
RP75 (10290) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (32) |
Full (10032) |
Representative proteomes | UniProt (15510) |
||||
---|---|---|---|---|---|---|---|
RP15 (1315) |
RP35 (3177) |
RP55 (7449) |
RP75 (10290) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | SMART |
Previous IDs: | DAGKa; |
Type: | Family |
Sequence Ontology: | SO:0100021 |
Author: |
Ponting CP |
Number in seed: | 32 |
Number in full: | 10032 |
Average length of the domain: | 154.1 aa |
Average identity of full alignment: | 40 % |
Average coverage of the sequence by the domain: | 19.09 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 160 | ||||||||||||
Family (HMM) version: | 22 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.