Summary: HisG, C-terminal domain
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "ATP phosphoribosyltransferase". More...
ATP phosphoribosyltransferase Edit Wikipedia article
In enzymology, an ATP phosphoribosyltransferase (EC 2.4.2.17) is an enzyme that catalyzes the chemical reaction
- 1-(5-phospho-D-ribosyl)-ATP + diphosphate ATP + 5-phospho-alpha-D-ribose 1-diphosphate
Thus, the two substrates of this enzyme are 1-(5-phospho-D-ribosyl)-ATP and diphosphate, whereas its two products are ATP and 5-phospho-alpha-D-ribose 1-diphosphate.
This enzyme belongs to the family of glycosyltransferases, specifically the pentosyltransferases. The systematic name of this enzyme class is 1-(5-phospho-D-ribosyl)-ATP:diphosphate phospho-alpha-D-ribosyl-transferase. Other names in common use include phosphoribosyl-ATP pyrophosphorylase, adenosine triphosphate phosphoribosyltransferase, phosphoribosyladenosine triphosphate:pyrophosphate, phosphoribosyltransferase, phosphoribosyl ATP synthetase, phosphoribosyl ATP:pyrophosphate phosphoribosyltransferase, phosphoribosyl-ATP:pyrophosphate-phosphoribosyl phosphotransferase, phosphoribosyladenosine triphosphate pyrophosphorylase, and phosphoribosyladenosine triphosphate synthetase. This enzyme participates in histidine metabolism.
Structural studies
As of late 2007, 10 structures have been solved for this class of enzymes, with PDB accession codes 1H3D, 1NH7, 1NH8, 1O63, 1O64, 1Q1K, 1USY, 1VE4, 1Z7M, and 1Z7N.
References
- AMES BN, MARTIN RG, GARRY BJ (1961). "The first step of histidine biosynthesis". J. Biol. Chem. 236: 2019–26. PMID 13682989.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Martin RG (1963). "The phosphorolysis of nucleosides by rabbit bone marrow: The nature of feedback inhibition by histidine". J. Biol. Chem. 238: 257–268.
- Voll MJ, Appella E, Martin RG (1967). "Purification and composition studies of phosphoribosyladenosine triphosphate:pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis". J. Biol. Chem. 242: 1760–7. PMID 5337591.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
External links
- The CAS registry number for this enzyme class is Template:CAS registry.
Gene Ontology (GO) codes
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
HisG, C-terminal domain Provide feedback
No Pfam abstract.
This tab holds annotation information from the InterPro database.
InterPro entry IPR013115
ATP phosphoribosyltransferase ( EC ) is the enzyme that catalyzes the first step in the biosynthesis of histidine in bacteria, fungi and plants as shown below. It is a member of the larger phosphoribosyltransferase superfamily of enzymes which catalyse the condensation of 5-phospho-alpha-D-ribose 1-diphosphate with nitrogenous bases in the presence of divalent metal ions [ PUBMED:11751055 ].
Histidine biosynthesis is an energetically expensive process and ATP phosphoribosyltransferase activity is subject to control at several levels. Transcriptional regulation is based primarily on nutrient conditions and determines the amount of enzyme present in the cell, while feedback inihibition rapidly modulates activity in response to cellular conditions. The enzyme has been shown to be inhibited by 1-(5-phospho-D-ribosyl)-ATP, histidine, ppGpp (a signal associated with adverse environmental conditions) and ADP and AMP (which reflect the overall energy status of the cell). As this pathway of histidine biosynthesis is present only in prokayrotes, plants and fungi, this enzyme is a promising target for the development of novel antimicrobial compounds and herbicides.
This entry represents the C-terminal portion of ATP phosphoribosyltransferase. The enzyme itself exists in equilibrium between an active dimeric form, an inactive hexameric form and higher aggregates [ PUBMED:14741209 , PUBMED:12511575 ]. Interconversion between the various forms is largely reversible and is influenced by the binding of the natural substrates and inhibitors of the enzyme. This domain is not directly involved in catalysis but appears to be responsible for the formation of hexamers induced by the binding of inhibitors to the enzyme, thus regulating activity.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Cellular component | cytoplasm (GO:0005737) |
Molecular function | magnesium ion binding (GO:0000287) |
ATP phosphoribosyltransferase activity (GO:0003879) | |
Biological process | histidine biosynthetic process (GO:0000105) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan GlnB-like (CL0089), which has the following description:
The members of this clan are characterised by the fact the domains, each comprised of four beta-strand and two alpha helices, tend to form tetrameric structures [1].
The clan contains the following 12 members:
CBD_PlyG CdAMP_rec CutA1 DUF190 DUF2007 DUF2179 DUF3240 HisG_C Nit_Regul_Hom NRho P-II Rhomboid_NAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (341) |
Full (4587) |
Representative proteomes | UniProt (18707) |
||||
---|---|---|---|---|---|---|---|
RP15 (632) |
RP35 (2116) |
RP55 (4541) |
RP75 (7632) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (341) |
Full (4587) |
Representative proteomes | UniProt (18707) |
||||
---|---|---|---|---|---|---|---|
RP15 (632) |
RP35 (2116) |
RP55 (4541) |
RP75 (7632) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_1550 (release 16.0) |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Finn RD |
Number in seed: | 341 |
Number in full: | 4587 |
Average length of the domain: | 73.9 aa |
Average identity of full alignment: | 35 % |
Average coverage of the sequence by the domain: | 24.47 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 73 | ||||||||||||
Family (HMM) version: | 14 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the HisG_C domain has been found. There are 50 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.