!!

Powering down the Pfam website
On October 5th, we will start redirecting the traffic from Pfam (pfam.xfam.org) to InterPro (www.ebi.ac.uk/interpro). The Pfam website will be available at legacy.pfam.xfam.org until January 2023, when it will be decommissioned. You can read more about the sunset period in our blog post.

Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
8  structures 2263  species 0  interactions 2618  sequences 5  architectures

Family: Hpr_kinase_N (PF02603)

Summary: HPr Serine kinase N terminus

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Two-component regulatory system". More...

Two-component regulatory system Edit Wikipedia article

Two-component systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions.[1] They consist of a membrane-bound histidine kinase that senses a specific environmental stimulus and a corresponding response regulator that mediates the cellular response, mostly through differential expression of target genes.[2]

References

  1. ^ Stock AM, Robinson VL, Goudreau PN (2000). "Two-component signal transduction". Annu. Rev. Biochem. 69: 183–215. doi:10.1146/annurev.biochem.69.1.183. PMID 10966457.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Mascher T, Helmann JD, Unden G (2006). "Stimulus perception in bacterial signal-transducing histidine kinases". Microbiol. Mol. Biol. Rev. 70 (4): 910–38. doi:10.1128/MMBR.00020-06. PMID 17158704.{{cite journal}}: CS1 maint: multiple names: authors list (link)

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

HPr Serine kinase N terminus Provide feedback

This family represents the N-terminal region of Hpr Serine/threonine kinase PtsK. This kinase is the sensor in a multicomponent phospho-relay system in control of carbon catabolic repression in bacteria [1]. This kinase in unusual in that it recognises the tertiary structure of its target and is a member of a novel family unrelated to any previously described protein phosphorylating enzymes [1]. X-ray analysis of the full-length crystalline enzyme from Staphylococcus xylosus at a resolution of 1.95 A shows the enzyme to consist of two clearly separated domains that are assembled in a hexameric structure resembling a three-bladed propeller. The blades are formed by two N-terminal domains each, and the compact central hub assembles the C-terminal kinase domains [2].

Literature references

  1. Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stulke J, Karamata D, Saier MH Jr, Hillen W; , Mol Microbiol 1998;27:1157-1169.: A novel protein kinase that controls carbon catabolite repression in bacteria. PUBMED:9570401 EPMC:9570401

  2. Marquez JA, Hasenbein S, Koch B, Fieulaine S, Nessler S, Russell RB, Hengstenberg W, Scheffzek K; , Proc Natl Acad Sci U S A 2002;99:3458-3463.: Structure of the full-length HPr kinase/phosphatase from Staphylococcus xylosus at 1.95 A resolution: Mimicking the product/substrate of the phospho transfer reactions. PUBMED:11904409 EPMC:11904409


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR011126

Two-component signal transduction systems enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions [ PUBMED:16176121 ]. Some bacteria can contain up to as many as 200 two-component systems that need tight regulation to prevent unwanted cross-talk [ PUBMED:18076326 ]. These pathways have been adapted to response to a wide variety of stimuli, including nutrients, cellular redox state, changes in osmolarity, quorum signals, antibiotics, and more [ PUBMED:12372152 ]. Two-component systems are comprised of a sensor histidine kinase (HK) and its cognate response regulator (RR) [ PUBMED:10966457 ]. The HK catalyses its own auto-phosphorylation followed by the transfer of the phosphoryl group to the receiver domain on RR; phosphorylation of the RR usually activates an attached output domain, which can then effect changes in cellular physiology, often by regulating gene expression. Some HK are bifunctional, catalysing both the phosphorylation and dephosphorylation of their cognate RR. The input stimuli can regulate either the kinase or phosphatase activity of the bifunctional HK.

A variant of the two-component system is the phospho-relay system. Here a hybrid HK auto-phosphorylates and then transfers the phosphoryl group to an internal receiver domain, rather than to a separate RR protein. The phosphoryl group is then shuttled to histidine phosphotransferase (HPT) and subsequently to a terminal RR, which can evoke the desired response [ PUBMED:11934609 , PUBMED:11489844 ].

This entry represents the N-terminal region of Hpr Serine/threonine kinase PtsK. This kinase is the sensor in a multicomponent phosphorelay system in control of carbon catabolic repression in bacteria [ PUBMED:11904409 ]. This kinase is unusual in that it recognises the tertiary structure of its target and is a member of a novel family unrelated to any previously described protein phosphorylating enzymes [ PUBMED:11904409 ]. X-ray analysis of the full-length crystalline enzyme from Staphylococcus xylosus at a resolution of 1.95 A shows the enzyme to consist of two clearly separated domains that are assembled in a hexameric structure resembling a three-bladed propeller. The blades are formed by two N-terminal domains each, and the compact central hub assembles the C-terminal kinase domains [ PUBMED:9570401 ].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan MurF-HprK_N (CL0365), which has the following description:

This includes both the MurE/MurF-ligases N-terminal domain and HPr kinase/phosphatase HprK N-terminal domain superfamilies.

The clan contains the following 2 members:

DRTGG Hpr_kinase_N

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(310)
Full
(2618)
Representative proteomes UniProt
(11773)
RP15
(412)
RP35
(1510)
RP55
(2714)
RP75
(4433)
Jalview View  View  View  View  View  View  View 
HTML View  View           
PP/heatmap 1 View           

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(310)
Full
(2618)
Representative proteomes UniProt
(11773)
RP15
(412)
RP35
(1510)
RP55
(2714)
RP75
(4433)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(310)
Full
(2618)
Representative proteomes UniProt
(11773)
RP15
(412)
RP35
(1510)
RP55
(2714)
RP75
(4433)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: COGs
Previous IDs: Hpr_kinase;
Type: Family
Sequence Ontology: SO:0100021
Author: Bashton M , Bateman A , Moxon SJ
Number in seed: 310
Number in full: 2618
Average length of the domain: 125.2 aa
Average identity of full alignment: 28 %
Average coverage of the sequence by the domain: 40.05 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.0 24.0
Trusted cut-off 24.0 24.1
Noise cut-off 23.9 23.9
Model length: 125
Family (HMM) version: 19
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Hpr_kinase_N domain has been found. There are 8 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...

AlphaFold Structure Predictions

The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.

Protein Predicted structure External Information
A0PZD5 View 3D Structure Click here
A1BDZ5 View 3D Structure Click here
A1K2R3 View 3D Structure Click here
A1TVV5 View 3D Structure Click here
A1VTW0 View 3D Structure Click here
A1WCQ6 View 3D Structure Click here
A1WFH8 View 3D Structure Click here
A2SC97 View 3D Structure Click here
A3CP33 View 3D Structure Click here
A4SG14 View 3D Structure Click here
A5N8A0 View 3D Structure Click here
A5VIG4 View 3D Structure Click here
A6TVI5 View 3D Structure Click here
A8AW75 View 3D Structure Click here
A8FHS4 View 3D Structure Click here
A9AEZ6 View 3D Structure Click here
A9BRT1 View 3D Structure Click here
A9I0P4 View 3D Structure Click here
A9KSS1 View 3D Structure Click here
B0K793 View 3D Structure Click here
B0SR57 View 3D Structure Click here
B1XXX9 View 3D Structure Click here
B1YLF7 View 3D Structure Click here
B2FRW1 View 3D Structure Click here
B2JCP7 View 3D Structure Click here
B2UES6 View 3D Structure Click here
B3EH20 View 3D Structure Click here
B3QY08 View 3D Structure Click here
B4S5H8 View 3D Structure Click here
B4SDZ4 View 3D Structure Click here
B9DRJ3 View 3D Structure Click here
B9EAF7 View 3D Structure Click here
C0Z6Q2 View 3D Structure Click here
C4L5J5 View 3D Structure Click here
C5D7Q0 View 3D Structure Click here
O07664 View 3D Structure Click here
O34483 View 3D Structure Click here
O83600 View 3D Structure Click here
P47331 View 3D Structure Click here
P61323 View 3D Structure Click here