Summary: Ribosomal protein S9/S16
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Ribosomal protein S9/S16 Provide feedback
This family includes small ribosomal subunit S9 from prokaryotes and S16 from eukaryotes.
External database links
PROSITE: | PDOC00311 |
SCOP: | 1n32 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR000754
Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [ PUBMED:11297922 , PUBMED:11290319 ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits.
Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [ PUBMED:11290319 , PUBMED:11114498 ].
Ribosomal protein S9 is one of the proteins from the small ribosomal subunit. It belongs to the S9P family of ribosomal proteins which, on the basis of sequence similarities [ PUBMED:2332055 ], groups bacterial; algal chloroplast; cyanelle and archaeal S9 proteins; and mammalian, plant, and yeast mitochondrial ribosomal S9 proteins. These proteins adopt a beta-alpha-beta fold similar to that found in numerous RNA/DNA-binding proteins, as well as in kinases from the GHMP kinase family [ PUBMED:8722013 ].
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Cellular component | ribosome (GO:0005840) |
Molecular function | structural constituent of ribosome (GO:0003735) |
Biological process | translation (GO:0006412) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan S5 (CL0329), which has the following description:
This superfamily contains a wide range of families that possess a structure similar to the second domain of ribosomal S5 protein.
The clan contains the following 18 members:
ChlI DNA_gyraseB DNA_mis_repair EFG_IV Fae GalKase_gal_bdg GHMP_kinases_N IGPD Lon_C LpxC Morc6_S5 Ribonuclease_P Ribosomal_S5_C Ribosomal_S9 RNase_PH Topo-VIb_trans UPF0029 Xol-1_NAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (621) |
Full (12364) |
Representative proteomes | UniProt (47876) |
||||
---|---|---|---|---|---|---|---|
RP15 (2110) |
RP35 (6204) |
RP55 (11869) |
RP75 (19043) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (621) |
Full (12364) |
Representative proteomes | UniProt (47876) |
||||
---|---|---|---|---|---|---|---|
RP15 (2110) |
RP35 (6204) |
RP55 (11869) |
RP75 (19043) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Prosite |
Previous IDs: | S9; |
Type: | Family |
Sequence Ontology: | SO:0100021 |
Author: |
Finn RD |
Number in seed: | 621 |
Number in full: | 12364 |
Average length of the domain: | 122.1 aa |
Average identity of full alignment: | 45 % |
Average coverage of the sequence by the domain: | 68.93 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 121 | ||||||||||||
Family (HMM) version: | 22 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Ribosomal_S9 domain has been found. There are 1317 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.