Summary: HMGL-like
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Pyruvate carboxylase". More...
Pyruvate carboxylase Edit Wikipedia article
Pyruvate carboxylase is an enzyme of the ligase class that catalyzes the irreversible carboxylation of pyruvate to form oxaloacetate. The enzyme is a mitochondrial protein containing a biotin prosthetic group, requiring magnesium or manganese and acetyl CoA, and occurs in liver but not in muscle.
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
HMGL-like Provide feedback
This family contains a diverse set of enzymes. These include various aldolases and a region of pyruvate carboxylase.
Internal database links
SCOOP: | DHO_dh OMPdecase |
External database links
PROSITE: | PDOC00813 PDOC00643 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR000891
Pyruvate carboxylase ( EC ) (PC), a member of the biotin-dependent enzyme family, is involved in gluconeogenesis by mediating the carboxylation of pyruvate to oxaloacetate. Biotin-dependent carboxylase enzymes perform a two step reaction. Enzyme-bound biotin is first carboxylated by bicarbonate and ATP and the carboxyl group temporarily bound to biotin is subsequently transferred to an acceptor substrate such as pyruvate [ PUBMED:11851389 ]. PC has three functional domains: a biotin carboxylase (BC) domain, a carboxyltransferase (CT) domain which perform the second part of the reaction and a biotinyl domain [ PUBMED:7780827 , PUBMED:10229653 ]. The pyruvate binding to the CT active site induces a conformational change stabilised by the interaction of conserved Asp and Tyr residues in this domain which leads to the formation of the biotin binding pocket and ensures the efficient coupling of BC and CT domain reactions [ PUBMED:23698000 ]. The mechanism by which the carboxyl group is transferred from the carboxybiotin to the pyruvate is not well understood.
The pyruvate carboxyltransferase domain is also found in other pyruvate binding enzymes and acetyl-CoA dependent enzymes suggesting that this domain can be associated with different enzymatic activities.
This domain is found towards the N-terminal region of various aldolase enzymes. This N-terminal TIM barrel domain [ PUBMED:12764229 ] interacts with the C-terminal domain. The C-terminal DmpG_comm domain ( INTERPRO ) is thought to promote heterodimerization with members of INTERPRO to form a bifunctional aldolase-dehydrogenase [ PUBMED:12764229 ].
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | catalytic activity (GO:0003824) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan TIM_barrel (CL0036), which has the following description:
This large superfamily of TIM barrel enzymes all contain a common phosphate binding site. The phosphate is found in a variety of cofactors and ligands such as FMN [1,2].
The clan contains the following 61 members:
4HFCP_synth Ala_racemase_N ALAD Aldolase AP_endonuc_2 BtpA CdhD ComA CutC DAHP_synth_1 DAHP_synth_2 DeoC DHDPS DHO_dh DHquinase_I DUF2090 DUF4862 DUF561 DUF692 DUF993 Dus F_bP_aldolase FMN_dh G3P_antiterm GatZ_KbaZ-like Glu_syn_central Glu_synthase His_biosynth HMGL-like IGPS IMPDH KDGP_aldolase Lys-AminoMut_A MtrH NanE NAPRTase NeuB NMO OAM_alpha OMPdecase Orn_Arg_deC_N Oxidored_FMN PcrB PdxJ PRAI PRMT5_TIM Pterin_bind QRPTase_C Radical_SAM Radical_SAM_2 RhaA Ribul_P_3_epim SOR_SNZ TAL_FSA ThiC_Rad_SAM ThiG TIM TMP-TENI Trp_syntA UvdE UxuAAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (13) |
Full (33428) |
Representative proteomes | UniProt (141761) |
||||
---|---|---|---|---|---|---|---|
RP15 (4464) |
RP35 (15810) |
RP55 (32817) |
RP75 (54772) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (13) |
Full (33428) |
Representative proteomes | UniProt (141761) |
||||
---|---|---|---|---|---|---|---|
RP15 (4464) |
RP35 (15810) |
RP55 (32817) |
RP75 (54772) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_71 (release 2.1) |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Bateman A |
Number in seed: | 13 |
Number in full: | 33428 |
Average length of the domain: | 263.4 aa |
Average identity of full alignment: | 23 % |
Average coverage of the sequence by the domain: | 49.07 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 264 | ||||||||||||
Family (HMM) version: | 22 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the HMGL-like domain has been found. There are 185 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.