Summary: C-terminus of bacterial fibrinogen-binding adhesin
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "SdrG C terminal protein domain". More...
SdrG C terminal protein domain Edit Wikipedia article
SdrG_C_C | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() crystal structure analysis of s.epidermidis adhesin sdrg binding to fibrinogen (adhesin-ligand complex) | |||||||||
Identifiers | |||||||||
Symbol | SdrG_C_C | ||||||||
Pfam | PF10425 | ||||||||
InterPro | IPR011266 | ||||||||
|
This entry represents the fibrinogen-binding domain from bacterial proteins such as fibrinogen-binding adhesion SdrG and clumping factor A. In both SdrG and clumping factor A, there are two fibrinogen-binding domains with similar core beta-sandwich topologies, but with different modulations in their structure. This entry represents the second domain, while INTERPRO represents the first domain.
Gram-positive pathogens, such as Staphylococci, Streptococci, and Enterococci, contain multiple cell wall-anchored proteins. Some of these proteins act as adhesins and mediate bacterial attachment to host tissues through lock-and-interactions with host ligands, such as fibrinogen, a glycoprotein found in blood plasma that plays a key role in haemostasis and coagulation. For pathogenic bacteria that do not invade host cells, extracellular matrix proteins are preferred targets for bacterial adhesion; adhesins mediating these interactions have been termed MSCRAMMs (microbial surface components recognizing adhesive matrix molecules). A common binding domain organisation found within MSCRAMMs suggests a common ancestry. Both fibrinogen-binding adhesion SdrG and clumping factor A are MSCRAMMs.
Fibrinogen-binding adhesion SdrG is a cell wall-anchored adhesion found in the Gram-positive pathogen Mycobacterium farcinogenes that binds to the B-beta chain of human fibrinogen.[1] SdrG allows attachment of the bacterium to host tissues via specific binding to the beta-chain of human fibrinogen (Fg). SdrG binds to its ligand with a dynamic "dock lock, and latch" mechanism which represents a general mode of ligand-binding for structurally related cell wall-anchored proteins in most Gram-positive bacteria. The C-terminal part of SdrG(276-596) is integral to the folding of the immunoglobulin-like whole to create the docking grooves necessary for Fg binding.[1] Clumping factor A performs a similar function in Staphylococcus aureus by binding the gamma chain of fibrinogen.[2]
References
- ^ a b Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore D, Choe D, Xu Y, Hook M, Narayana SV (2003). "A "dock, lock, and latch" structural model for a staphylococcal adhesin binding to fibrinogen". Cell. 115 (2): 217–28. PMID 14567919.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Deivanayagam CC, Wann ER, Chen W, Carson M, Rajashankar KR, Höök M, Narayana SV (2002). "A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A". EMBO J. 21 (24): 6660–72. PMC 139082. PMID 12485987.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link)
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
C-terminus of bacterial fibrinogen-binding adhesin Provide feedback
This is the C-terminal half of a bacterial fibrinogen-binding adhesin SdrG. SdrG is a Gram-positive cell-wall-anchored adhesin that allows attachment of the bacterium to host tissues via specific binding to the beta-chain of human fibrinogen (Fg). SdrG binds to its ligand with a dynamic "dock, lock, and latch" mechanism which represents a general mode of ligand-binding for structurally related cell wall-anchored proteins in most Gram-positive bacteria. The C-terminal part of SdrG(276-596) is integral to the folding of the immunoglobulin-like whole to create the docking grooves necessary for Fg binding. The domain is associated with families of Cna_B, PF05738 [1].
Literature references
-
Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore D, Choe D, Xu Y, Hook M, Narayana SV; , Cell. 2003;115:217-228.: A "dock, lock, and latch" structural model for a staphylococcal adhesin binding to fibrinogen. PUBMED:14567919 EPMC:14567919
This tab holds annotation information from the InterPro database.
InterPro entry IPR011266
This entry represents the fibrinogen-binding domain from bacterial proteins such as fibrinogen-binding adhesion SdrG and clumping factor A. In both SdrG and clumping factor A, there are two fibrinogen-binding domains with similar core beta-sandwich topologies, but with different modulations in their structure. This entry represents the second domain, while INTERPRO represents the first domain.
Gram-positive pathogens, such as Staphylococci, Streptococci, and Enterococci, contain multiple cell wall-anchored proteins. Some of these proteins act as adhesins and mediate bacterial attachment to host tissues through lock-and-interactions with host ligands, such as fibrinogen, a glycoprotein found in blood plasma that plays a key role in haemostasis and coagulation. For pathogenic bacteria that do not invade host cells, extracellular matrix proteins are preferred targets for bacterial adhesion; adhesins mediating these interactions have been termed MSCRAMMs (microbial surface components recognizing adhesive matrix molecules). A common binding domain organisation found within MSCRAMMs suggests a common ancestry. Both fibrinogen-binding adhesion SdrG and clumping factor A are MSCRAMMs.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Cellular component | cell wall (GO:0005618) |
Biological process | cell adhesion (GO:0007155) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan Adhesin (CL0204), which has the following description:
This superfamily includes a variety of bacterial adhesins that have a jelly-roll beta-barrel fold [1]. These domains are involved in sugar recognition.
The clan contains the following 17 members:
Adhesin_Dr AfaD AgI_II_C2 Antig_Caf1 Antigen_C Collagen_bind DUF1120 Fim-adh_lectin FimA Fimbrial FimH_man-bind GramPos_pilinBB PapG_N Saf-Nte_pilin SCPU SdrG_C_C Sgo0707_N2Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (10) |
Full (52) |
Representative proteomes | UniProt (1766) |
||||
---|---|---|---|---|---|---|---|
RP15 (16) |
RP35 (28) |
RP55 (49) |
RP75 (121) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (10) |
Full (52) |
Representative proteomes | UniProt (1766) |
||||
---|---|---|---|---|---|---|---|
RP15 (16) |
RP35 (28) |
RP55 (49) |
RP75 (121) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Gene3D, pdb_1r17 |
Previous IDs: | none |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Finn RD |
Number in seed: | 10 |
Number in full: | 52 |
Average length of the domain: | 151.4 aa |
Average identity of full alignment: | 18 % |
Average coverage of the sequence by the domain: | 10.21 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 156 | ||||||||||||
Family (HMM) version: | 12 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the SdrG_C_C domain has been found. There are 43 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.
Protein | Predicted structure | External Information |
---|---|---|
P14738 | View 3D Structure | Click here |
Q2FUY2 | View 3D Structure | Click here |
Q2G015 | View 3D Structure | Click here |
Q2G0L4 | View 3D Structure | Click here |
Q2G0L5 | View 3D Structure | Click here |
Q2G1T5 | View 3D Structure | Click here |